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NONPARAMETRIC ENGEL CURVES AND REVEALED PREFERENCE

By Richard W. Blundell, Martin Browning,

and Ian A. Crawford
1

This paper applies revealed preference theory to the nonparametric statistical analysis of
consumer demand. Knowledge of expansion paths is shown to improve the power of non-
parametric tests of revealed preference. The tightest bounds on indifference surfaces and
welfare measures are derived using an algorithm for which revealed preference conditions
are shown to guarantee convergence. Nonparametric Engel curves are used to estimate
expansion paths and provide a stochastic structure within which to examine the consistency
of household level data and revealed preference theory. An application is made to a long
time series of repeated cross-sections from the Family Expenditure Survey for Britain. The
consistency of these data with revealed preference theory is examined. For periods of con-
sistency with revealed preference, tight bounds are placed on true cost of living indices.

Keywords: Consumer demands, nonparametric regression, revealed preference.

1� introduction

The attraction of revealed preference theory is that it allows an
assessment of the empirical validity of the usual integrability conditions without
the need to impose particular functional forms on preferences. Although devel-
oped to describe individual demands by Afriat (1973) and Diewert (1973) follow-
ing the seminal work of Samuelson (1938) and Houthakker (1950), it has usually
been applied to aggregate data but this presents a number of problems.2 First, on
aggregate data, ‘outward’ movements of the budget line are often large enough,
and relative price changes are typically small enough, that budget lines rarely
cross (see Varian (1982), Bronars (1987), and Russell (1992)). This means that
aggregate data may lack power to reject revealed preference conditions. Second,
if we do reject revealed preference conditions on aggregate data, we have no way
of assessing whether this is due to a failure at the micro level or to the inappro-
priate aggregation across households that do satisfy the integrability conditions

1 We are grateful to James Banks, Laura Blow, Tom Crossley, Alan Duncan, Jin Hahn, Hide
Ichimura, Arthur Lewbel, Ian Preston, the co-editor and three anonymous referees as well as seminar
participants in Berkeley, Bonn, Bristol, Chicago, CREST, Copenhagen, Havard-MIT, Northwestern,
Iowa, Univeristy of British Columbia, and University College Dublin for helpful comments. This
study is part of the program of research of the ESRC Centre for the Microeconomic Analysis of
Fiscal Policy at IFS. The financial support of the ESRC, the Leverhulme Trust, the Danish SSF, and
the Danish National Research Foundation (through its grant to CAM) is gratefully acknowledged.
Material from the FES made available by the ONS through the ESRC Data Archive has been used
by permission of the controller of HMSO. Neither the ONS nor the ESRC Data Archive bear
responsibility for the analysis or the interpretation of the data reported here. The usual disclaimer
applies.

2 See Manser and McDonald (1988), and references therein.
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but who have different nonhomothetic preferences. By combining nonparamet-
ric statistical methods with a revealed preference analysis of micro data we can
overcome the problems we have described.
We also have a number of other motivations for this study. First, paramet-

ric demand studies on micro data often reject Slutsky symmetry, which is one
of the implications of utility maximization subject to a linear budget constraint.
Amongst the many possible explanations for this rejection are that either we
have the ‘wrong’ functional form or that there exists no well-behaved form of
preferences that can rationalize the data. Nonparametric analysis allows us to
check this. Second, it has proven difficult to test for (global) negative semi-
definiteness of the Slutsky matrix in parametric demand models. Using non-
parametric revealed preference analysis we can simultaneously test for both
symmetry and negative semi-definiteness. Third, if the integrability conditions are
not rejected, we often wish to go on and use demand estimates for policy anal-
ysis. Using parametric analysis there is always some uncertainty as to how much
the welfare conclusions are driven by functional form. If we employ nonpara-
metric techniques, then we can obtain bounds on welfare effects and use these
bounds to judge the importance of the choice of functional form on welfare con-
clusions. Finally, the nonparametric analysis can aid in the development of new
and parsimonious parametric demand systems.
The layout of the paper is as follows. In Section 2 we present the specifics

of testing the Generalized Axiom of Revealed Preference (GARP). We then
develop a method for choosing a sequence of total expenditures that maximize
the power of tests of GARP with respect to a given preference ordering. We term
this the sequential maximum power (SMP) path. We present some simulation
evidence that shows that our GARP tests have considerable power against some
alternatives, but not others. We then develop a method of bounding true cost
of living indices. Algorithms are presented that give ‘tightest’ upper and lower
bounds for indifference curves passing through any chosen point in the commod-
ity space. We also show how these methods can be used to calculate tight bounds
on annual inflation rates without making parametric assumptions.
Section 3 presents a framework for implementing our procedures by using non-

parametric Engel curves for each commodity. To do this we assume that house-
holds in the same time period and location face the same relative prices. Under
this assumption, the nonparametric Engel curves correspond to expansion paths
for each price regime. In estimation we address two key issues that arise when
placing local average demands in a structural economic context. First, we con-
sider the problem of pooling nonparametric Engel curves across households of
different demographic composition. We show that a partially linear model that
allows for demographic variation (see, for example, Robinson (1988)) has the
very unattractive property that it reduces to Piglog demands (budget shares are
linear in log total outlay) under homogeneity and symmetry. We then show that
the shape invariant model of Härdle and Marron (1990) provides a theory con-
sistent generalization to the partially linear semiparametric method of pooling
nonparametric Engel curves across households of different composition. Second,
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nonparametric engel curves 207

we allow for the endogeneity of log total expenditure in the nonparametric bud-
get share equations. This section concludes with a discussion of the issues sur-
rounding unobservable preference heterogeneity.3 We evaluate the use of local
average demands in the presence of unobserved heterogeneity and derive a mea-
sure of the bias that results in measuring the welfare cost of finite price changes.
In Section 4 we present an empirical investigation of revealed preference using

British Family Expenditure Survey data from 1974 to 1993. This long time series
of cross-sections is used to estimate the associated nonparametric Engel curves
for 22 goods, adjusted for endogeneity and demographic composition. We then
examine whether revealed preference theory can be rejected for particular sub-
periods of the data. From the asymptotic distribution theory for nonparametric
regression we are able to provide a statistical structure within which to exam-
ine the consistency of data with revealed preference theory without imposing a
global parametric structure to preferences. The approach we adopt provides an
alternative to the Afriat inefficiency measure explored in Famulari (1995) and
Mattei (1994). We find that GARP is not rejected for long periods of our data
for most income groups. We also compute bounds for a true cost of living index
over the period and annual inflation rates. We compare these bounds to popu-
lar price index numbers and to other nonparametric bounds. The new bounds
we derive are shown to provide considerable improvements on classical revealed
preference bounds. Section 5 concludes with a summary of our results and a
consideration of future directions.

2� individual data and revealed preference

2�1� Revealed Preference and Observed Demands

Suppose we wished to test experimentally whether a particular agent had ‘ratio-
nal’ and stable preferences. In the context of demand, we could do this by facing
the agent with a series of prices and total expenditures and testing whether their
demand responses satisfy the Slutsky conditions. Specifically, suppose we have T
periods, t = 1� � � T , and we choose J -vectors of (positive) prices pt and (positive)
total expenditures xt for each period. We assume that every agent responds with
a unique positive demand for each price vector and outlay.

Assumption 1: For each agent there exists a set of demand functions q�p� x� �
�J+1

++ →�J
++ that satisfy adding-up: p′q�p� x�= x for all prices p and total outlays x.

Thus we are implicitly assuming that preferences are strictly convex and locally
nonsatiated (but not necessarily transitive). For a given price vector pt we denote
the corresponding J -valued function of x as qt�x� (with q

j
t �x� for good j), which

we shall refer to as an expansion path for the given prices. We shall also have
need of the following assumption.

3 Even taking a small number of households in different price regimes usually leads to a rejection
of the nonparametric conditions (see Koo (1963), Mossin (1972), and Mattei (1994), for example,
and the recent paper by Sippel (1997) on the use of experimental data).
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Assumption 2: Weak normality: if x > x′, then q
j
t �x� ≥ q

j
t �x

′� for all j and
all pt .

Thus increasing total outlay does not lead to a reduced demand for any good.
Adding up and weak normality imply that at least one of the inequalities in this
assumption is strict and that expansion paths are continuous.
For our hypothetical experiment we could observe the demands for the given

prices and total outlays and test whether the resulting series of prices and
demands satisfy revealed preference tests. To do this we need to define a variety
of revealed preference relationships. We say that qt�xt� is directly revealed weakly
preferred to q∗ if the latter is affordable at period t prices and total expenditure
xt� p

′
tqt�xt�≥ p′

tq
∗ which we write as qt�xt�R

0q∗. An alternative characterization
is that q∗ is within the budget set defined by �pt� xt�. If the inequality in this con-
dition is strict, then we say that qt�xt� is directly revealed strictly preferred to q∗

�qt�xt�P
0q∗� since the agent could have obtained the latter more cheaply (at the

prices pt) but chose not to. In this case, of course, q∗ is in the interior of the
budget set defined by �pt� xt�.
Now consider any sequence of prices and total outlays �ps�pt�pu� � � � pv�

pw�xs� xt , xu� � � � � xv� xw�.4 We say that the sequence of associated demand
vectors �qs�xs��qt�xt��qu�xu�� � � � qv�xv��qw�xw�� is preference ordered if
qs�xs�R

0qt�xt�, qt�xt�R
0qu�xu�� � � � qv�xv�R

0qw�xw�. Thus a sequence of demands
is preference ordered if each demand is directly revealed at least as good
as the next one. Given this, we say that qs�xs� is revealed weakly preferred to
qw�xw� if there is a preference ordered sequence starting at the former and
ending at the latter; we denote this by qs�xs�Rqw�xw�. Suppose now that we
have qs�xs�Rqw�xw� and that we also have that the final demand in the subse-
quence, qw�xw�, is directly revealed strictly preferred to the first demand vector
qs�xs� (that is, qw�xw�P

0qs�xs�). In this case we say that this subsequence fails
GARP. We shall say that a set of prices and demands fails GARP if any subse-
quence drawn from the set fails GARP. To illustrate, suppose that we have five
time periods and that q4�x4�R

0q2�x2��q2�x2�R
0q1�x1�, and q1�x1�P

0q4�x4�. Thus
the subsequence �q4�x4��q2�x2��q1�x1�� fails GARP5 and consequently the set
�q1�x1��q2�x2��q3�x3��q4�x4��q5�x5�	 fails GARP.

2�2� Choosing a Path for Comparison Points

Below we take the sequence of (absolute) prices �p1�p2� � � � pT � that is given
by our data set but we are free to choose the sequence of total expenditures
used in the comparisons above. When considering how to do this, there is a well
known problem with applying GARP tests to data to which Varian (1982) refers

4 We will denote a sequence by ��� �� and a set by ��� �	. We remind the reader that the order
matters for a sequence (so that (1, 2, 3) is different from (3, 1, 2)) but not for sets (so that the sets
�1�2�3	 and �2�3�1	 are the same).

5 Note that this does not necessarily imply that the subsequence �q1�x1��q4�x4��q2�x2�� fails GARP.
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nonparametric engel curves 209

in his applied work. This problem arises since, particularly with time series data,
income growth over time can swamp variations in relative prices (in which we are
interested). This is because real income growth induces outward movements of
the budget constraint and, combined with typically small period-to-period relative
price movements, this means that budget lines may seldom cross. As a result, data
often lack power to reject GARP. Indeed, if we choose the xt ’s so that budget
lines never cross, then we can never violate the GARP conditions. Clearly then,
with a given set of relative prices the power of a revealed preference test will
depend critically on the choice of the outlay path �x1� x2� � � � xT �.
One possible solution is to choose a sequence of constant ‘real’ total expen-

ditures. Thus given x1 and a set of price indices �P1�p1��P2�p2�� � � � PT �pT �	 we
could choose xt = x1Pt/P1. Although superficially attractive this begs the question
of what price index to use. More importantly, even if the series of demands gen-
erated in this way did satisfy GARP, we cannot be sure that any other series of
total expenditures ‘starting’ from x1 would also satisfy GARP. Instead of this, we
present an algorithm for determining a sequence of demands that maximizes the
chance of finding a rejection given a particular preference ordering of the data.
Consider any subsequence (taken to be of length 5 for illustrative purposes)

of prices �ps�pt�pu�pv�pw�. Now take an outlay xu in period u with associated
demand qu�xu�. We can construct a preference ordered sequence through qu�xu�
for this sequence of prices by using two recursive schemes, one forwards and the
other backwards. For the backwards part (the set of demands that are at least
as good as qu�xu�) we set total outlay in period t so that the period u quantity
bundle is just affordable: x̃t = p′

tqu�xu�. Thus q̃t = qt�x̃t� is the ‘lowest’ point on
the period t expansion path that is directly revealed at least as good as qu�xu�.
Then set q̃s = qs�p

′
sq̃t�. Thus the sequence �q̃s� q̃t�qu�xu�� is preference ordered.

To construct the path of quantities to which qu�xu� is weakly preferred, we
first solve for the value of outlay in period v that satisfies xu = p′

uqv�xv�, which
we denote x̃v, with demand q̃v = qv�x̃v�.6 This is constructed so that q̃v is the
‘highest’ demand on the period v expansion path to which qu�xu� is directly
revealed weakly preferred. Then construct q̃w = qw�x̃w� by setting x̃v = p′

vqw�x̃w�.
By construction, the entire path—�q̃s� q̃t�qu�xu�� q̃v� q̃w�—is preference ordered.
We term the path created in this way a sequential maximum power (SMP) path
through qu�xu�. An SMP path is said to start (respectively, finish) at qu�xu� if the
latter is the first (respectively, the last) element in the sequence. Although we do
not denote it explicitly, it is important to recognize that an SMP path is always
defined relative to a sequence of time indices (in this illustration (s� t�u�v�w))
and a point on an expansion path for one of these time periods (in this case,
qu�xu�). For example, �q̃s� q̃t�qu�xu�� is an SMP path finishing at qu�xu�.
To illustrate why this gives maximal power for a particular sequence, consider

the three-period, two-good example Figure 1. Here the order of the sequence
is (3�2�1) finishing at q1�x1� so that �q3�x̃3�R

0q2�x̃2�R
0q1�x1��. In this figure

6 Given continuity and weak normality of the expansion paths there always exists a unique outlay
and demand that satisfies this condition.
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210 r. blundell, m. browning, and i. crawford

Figure 1.—Testing GARP with expansion paths.

the shaded part of the period 3 budget line gives the demands that result in a
rejection of GARP. One can see that if we took any other preference ordered
path of demands with the same sequence �q3�x3�R

0q2�x2�R
0q1�x1�� this would

reduce the length of this segment. This is because any such path pushes out the
period 3 budget line, which reduces the chance of observing a GARP rejecting
demand in period 3 (if demands are weakly normal).7 More formally, we have
the following proposition.

Proposition 1: Suppose that the demand sequence

�qs�xs��qt�xt��qu�xu�� � � � �qv�xv��qw�xw��

rejects GARP. If demands are weakly normal, then the SMP path for the same
sequence of periods ending at qw�xw�:

�qs�x̃s��qt�x̃t��qu�x̃u�� � � � �qv�x̃v��qw�xw��

also rejects GARP.

7 This is valid for the true expansion path. In our empirical work below we use estimated expansion
paths. For these, there is the possibility that the precision of the estimated path is such that although
the length is reduced the probability of rejection is not.
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nonparametric engel curves 211

Thus, if we test for GARP along a given SMP path finishing at qw�xw� and we
do not reject, then we can be confident that we would not reject for any other
preference ordered path that finishes at the same demand and maintains the
preference ordering implied by the SMP path. It is important to note that there
may be other preference orderings that finish at qw�xw� that do reject GARP, so
that our maximal power is always with respect to a particular sequencing of time
periods. In our empirical work below we always take the chronological sequence
finishing in period 1. It is important also to note that maintaining the ordering
of demands but choosing a different end point—qw�x

′
w� instead of qw�xw�—will

result in a different SMP path that may violate GARP, even if the SMP path
finishing at qw�xw� does not. To check this we take a number of quantile points
in the x distribution and apply the SMP procedure to demand sequences ending
at qw�x� where qw�x� is evaluated at each of these outlays.

2�3� The Power of Parametric and Revealed Preference Tests of Integrability

When considering tests of integrability, whether parametric or nonparametric,
we must be careful to recognize that there are some alternatives against which
both modes of test will have low power. To illustrate with a well known example,
suppose we draw a large independent sample each period from a large popula-
tion of agents. If each agent in each period chooses demands on their budget
surface by drawing from a uniform distribution on the budget surface, then in
general no individual path of demands will be integrable. However the (popu-
lation and sample) mean data will appear to be generated by a Cobb-Douglas
utility function with weights equal to the inverse of the number of commodities
(see Becker (1962) and Grandmont (1992)). Parametric and revealed preference
tests are unlikely to reject the integrability conditions for such data but it is not
clear that we would wish to characterize them as the outcome of a ‘rational’ pro-
cedure. Equally there will be paths of relative prices that lead to low power tests
of the integrability conditions under certain alternatives. The extreme case is if
we have no variation in relative prices, in which case, of course, we cannot esti-
mate price effects for parametric models and we have only one expansion path
for our GARP tests.
Thus many of the concerns with the power of tests of the integrability condi-

tions are common to both parametric and revealed preference tests. There is also
a concern, however, that revealed preference tests are inherently lacking in power
(as compared with parametric tests) and will fail to reject ‘too often.’ However,
we know from the discussion of the previous subsections that the nonparametric
approach can be used to test revealed preference conditions without recourse to
any parametric specification of preferences. In the event that they do not reject,
parametric models will be able to improve on the bounds that we derive for cost
of living and welfare measurement using revealed preference alone. One possi-
ble strategy for future work is to go on to consider flexible parametric models
over regions where the nonparametric tests do not fail. We emphasize again that
one of our concerns regarding currently used parametric models is that they may
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be too inflexible and in particular they may unduly restrict differences in price
effects between rich and poor.
To investigate this issue further we consider three alternative generating pro-

cesses that produce nonintegrable demands: a random procedure, an integrable
path with measurement error, and a path generated by a slow adjustment model.
All of the calculations below use the actual sequence of relative prices observed
in our data, which is the relevant set of relative prices. For the random alternative
we suppose that the demand at any price/income configuration is a draw from
a uniform distribution on the budget surface (just as we assumed for individual
agents in the illustration above but without the averaging). The SMP procedure
with a given sequence of prices is: choose x1 and draw the vector q1 from a uni-
form distribution on the budget surface given by �p1� x1�. Then set x̂2 = p′

2q1 and
draw q̂2 from a uniform distribution on the new budget surface. Continue for all
T periods. We can show analytically that if we have only two periods and two
goods, then GARP will only reject half of the time. This indicates low power.
On the other hand, as the number of periods grows, the probability of rejecting
grows. The actual rejection probability depends on the number of periods and
the relative price variability. To illustrate this we take the actual sequence of rel-
ative prices we have in our data (for 22 goods over 20 years; details are given in
the empirical section below) and generate demands according to this alternative.
We found that in 10,000 random simulated SMP paths we reject GARP every
time. This indicates that our procedure does have considerable power against
this particular alternative. However, a skeptic might argue that any procedure
that failed to reject the rationality of such an unstructured alternative would be
very poor indeed. Thus we also consider two other alternatives that are ‘close’
to integrable.
Our second procedure is to take a set of demands that are integrable and to

incorporate a multiplicative measurement error.8 Specifically, in each period we
draw a (22× 1) vector of budget shares from a joint distribution in which each
budget share has a fixed mean approximately9 equal to the average budget shares
in 1974; see Appendix C for details. This is equivalent to taking a Cobb-Douglas
utility function over 22 goods with fixed budget shares and then multiplying by a
unit mean measurement error. Clearly, if we set the variance of the budget share
draws in this procedure to zero then we have a path of Cobb-Douglas demands
that satisfy GARP. Conversely, if we allow for a great deal of measurement error,
then we shall almost certainly reject GARP. The critical issue, then, is for how
much measurement error is it reasonable to allow? We calibrate this to the vari-
ance of the budget shares in our data, which gives an upper bound on measure-
ment error. We then take different proportions of these variances and simulate

8 An alternative interpretation is that for each price regime we generate a sample that is an inde-
pendent draw from the same population with a given distribution of heterogeneity over the prefer-
ence parameters.

9 Adding-up implies that we need to normalize by the sum of random variables across all shares.
Consequently, the mean of the simulated errors on the budget shares will involve the mean of the
ratio of random variables. In our simulations this ratio has a mean close to unity.
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nonparametric engel curves 213

10,000 times and record the proportion of rejections. We find that even very
modest amounts of noise cause rejection. For example, if we allow for only 0.5%
(respectively 1% and 2%) of the total variance to be due to noise and use these
in our simulations, then we reject 61% (respectively, 87% and 97%) of the time.
Thus the GARP/SMP procedure has considerable power against this alternative.
The third demand generating process we consider is a ‘naive’ adjustment

model. In this we assume that households adjust slowly to the optimum for the
prices in that period. Specifically, if we take (integrable) demands q�p� x�, we set
the period t demand q̃�pt� xt� to

q̃�pt� xt�= 
q�pt� xt�+ �1−
�q̃�pt−1� xt−1� for t = 2� � � � � T �

Thus the sequence of demands will be integrable if we set 
 = 1, but as adjust-
ment becomes slower, the likelihood of rejecting GARP increases. Note that
this system satisfies ‘long run’ integrability. For the demand functions we use a
Quadratic Almost Ideal System (QUAIDS) (see Banks, Blundell, and Lewbel
(1997)) with parameters estimated on our sample and the homogeneity and sym-
metry conditions imposed.10 For the first period demands at a given outlay x1 we
set q1 = q�p1� x1� and, as before, subsequent total expenditures are chosen using
the SMP path for our price data. Doing this, we find that for the path starting
at median first period total outlay, we reject GARP if and only if 
 < 0�26. Such
a low figure suggests that our testing procedure is unlikely to have good power
against an alternative that satisfies the integrability conditions in the long run.
Once again, we emphasize that the same may be true of alternative parametric
procedures.

2�4� Computing Tight Bounds on Welfare Measures

Afriat (1977) showed how revealed preference restrictions can be used to pro-
vide information on the curvature of indifference surfaces in commodity space
and then used to set bounds on the welfare effects of a price change. This is fur-
ther developed in Varian (1982) and Manser and McDonald (1988). One prob-
lem with applying this procedure to the aggregate data that the latter use is that
budget surfaces rarely cross so that the bounds from such data tend to be wide.11

Knowledge of expansion paths can greatly improve these bounds. Without loss of
generality we consider an indifference surface passing through some base bundle
q1 on the first expansion path q1�x�. If GARP and weak normality hold, then we
shall show that we can partition each expansion path, qt�x�, into three distinct
segments. First, on any expansion path, there are the demands that can be shown
to be weakly revealed preferred to q1. Second, we have the demands that we

10 We do not impose the negativity conditions on our parameter estimates but we note that the ‘full
adjustment’ paths generated by our simulations starting at median total expenditure do pass GARP.

11 Varian (1983) and Manser and McDonald (1988) tighten the bounds using a maintained hypoth-
esis of homotheticity, but this is problematic since much empirical evidence suggests that budget
shares are not constant with respect to the total budget.
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214 r. blundell, m. browning, and i. crawford

can show are weakly revealed dominated by q1. Finally there is an intermediate
segment with demands that cannot be revealed preference ordered with respect
to q1. We then show how knowledge of these segments for each expansion path
allows us to construct tight bounds on the welfare costs of arbitrary price changes
from the base price p1.
We first present an algorithm that we claim finds the ‘lowest’ point on each

expansion path such that we can show qtRq1; we term this the weakly preferred
set. We then show that if GARP and weak normality hold, then this algorithm
converges in a finite number of steps and the weakly preferred set has the claimed
property.

Algorithm A: Input: a base bundle q1, price vectors pt and expansion paths
qt�x� for t = 2� � � � � T . Output: QB�q1�.

(i) Set s = 0 and F �s� = �q1�q2�p
′
2q1�� � � � �qT �p

′
T q1�	.

(ii) Set F �s+1� = �q1�q2�minqt∈F �s��p′
2qt	�� � � � �qT �minqt∈F �s��p′

T qt	�	.
(iii) If F �s+1� ≡ F �s�, then set QB�q1�= F �s� and stop. Else set s = s+1 and go

to (ii).

The set QB�q1� has T elements, one for each expansion path; we denote the
tth element of QB�q1� by qB

t . A discussion of this algorithm and the one following
and an illustration can be found in Appendix B.

Proposition 2: If GARP and weak normality hold, then:
(A) algorithm A converges in a finite number of steps;
(B) �qt ≥ qB

t �⇔ �qtRq1�.

The first part of the proposition assures that the algorithm is feasible (it in fact
converges quite quickly in practice). The second part of the proposition verifies
that the algorithm identifies the largest set of points on expansion paths that can
be shown to be revealed preferred to q1 with the data to hand.12 We also have
an algorithm that finds the ‘highest’ point on each expansion path such that q1
can be shown to be revealed preferred to these points.

Algorithm B: Input: a base bundle q1 and price vectors pt and expansion
paths qt�x� for t = 1�2� � � � � T . Output: QW�q1�.

(i) Set s= 0 and F �s� = �q1�q2�x�p′
1q2�x�= p′

1q1�� � � � �qT �x�p′
1qT �x�= p′

1q1�	.
(ii) Set F �s+1� = �q1� �maxqt∈F �s� �q2 � p′

tqt = p′
tq2�� � � � �minqt∈F �s� �qT � p′

tqt =
p′
tqT �	.
(iii) If F �s+1� ≡ F �s�, then set QW�q1�= F �s� and stop. Else set s = s+1 and go

to (ii).

12 We could extend the weakly revealed preferred set to the whole commodity space by taking
the convex hull of the points in QB�q1�, but this is not necessary for the welfare bounds we derive
below.
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nonparametric engel curves 215

Denoting the tth element of QW�q1� by qW
t , we have the following results for

this algorithm:

Proposition 3: If GARP and weak normality hold, then:
(A) algorithm B converges in a finite number of steps;
(B) for any x we have �qW

t ≥ qt�⇔ �q1Rqt�.

Finally we can show that for any t we have qB
t ≥ qW

t so that the two points
divide any expansion path into three connected segments (given weak normality).
Given the sets QW�q1� and QB�q1� we can derive bounds on the welfare effects
of a price change. For example, suppose that we have a reference commodity
level q1 (on the expansion path q1�x�) and an arbitrary absolute price vector pz.
The true cost-of-living index based at q1 is given by

c�pz�q1�

c�p1�q1�
(1)

where c�pz�q1� is the expenditure function giving the cost of attaining a bundle
indifferent to q1 at prices pz. Bounds can be placed on this index using the two
sets derived above:13

minq�p
′
zq�q ∈QW�q1�	

p1q1
≤ c�pz�q1�

c�p1�q1�
≤ minq�p

′
zq�q ∈QB�q1�	

p1q1
�(2)

In Section 4 we use these results together with nonparametric estimates of
Engel curves to compute upper and lower bounds on the true fixed welfare base
cost-of-living index over the period 1974 to 1993 using British household budget
survey data. These are then compared to standard cost-of-living index formulae
and to alternative nonparametric and revealed preference bounds.
As well as being interested in fixed welfare base cost-of-living indices that

span a period of, perhaps, several years, we are often even more interested
in annual inflation rates and with these it is typical to update the welfare
base in each period rather than let it get too out of date. For example the
inflation rate between the adjacent years t and t + 1 may be calculated as
�c�pt+1�qt�/c�pt�qt��−1. Bounds can easily be derived by finding the bounds on
the indifference curve through qt—i.e. QW�qt� and QB�qt�—and by applying

minq�p
′
t+1q�q ∈QW�qt�	

p′
tqt

≤ c�pt+1�qt�

c�pt�qt�
≤ minq�p

′
t+1q�q ∈QB�qt�	

p′
tqt

�

The inflation rate between t + 1 and t + 2 can be measured as
�c�pt+2�qt+1�/c�pt+1, qt+1��−1 and a bound derived in an identical manner. In
Section 5 we present annual inflation bounds for 1975 to 1993 derived in this way.

13 Note that there is the possibility of corner solutions with respect to the lower bound whereby the
new price vector may cause one or more demands to fall to zero. To allow for this in the calculation
of the cost-of-living index the lower bound set QW�q1� needs to be augmented in the following way:

Qw�q1�=max
j

{
p′
wqw/p

j
w � ∀qw ∈Qw�q1�

}∪QW�q1��

See Appendix B for an illustration.
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216 r. blundell, m. browning, and i. crawford

3� nonparametric engel curves

3�1� Kernel Estimation of the Budget Share System

To estimate the expansion paths for each price regime we employ nonparamet-
ric regression methods.14 Let ��lnxi�wij�	

n
i=1 represent a sequence of n household

observations on the log of total expenditure lnxi and on the jth budget share
wij , for each household i facing the same relative prices. For each commodity j ,
budget shares and total outlay are related by the stochastic Engel curve

wij = gj�lnxi�+�ij(3)

where we assume that, for each household i, the unobservable term �ij satisfies

E��ij � lnx�= 0 and var��ij � lnx�= �2
j �lnx� ∀ goods j = 1� � � � � J(4)

so that the nonparametric regression of budget shares on log total expenditure
estimates gj�lnx�.15 In (3), if preferences are Piglog,16 gj is linear in lnx for all
goods j = 1� � � � � J .
In our empirical application we use the following unrestricted Nadaraya-

Watson kernel regression estimator:

ĝj �lnx�=
r̂ hj �lnx�

f̂ h�lnx�
≡ ŵj�lnx�(5)

in which

r̂ hj �lnx�=
1
n

n∑
l=1

Kh�lnx− lnxl�wlj�(6)

and

f̂ h�lnx�= 1
n

n∑
l=1

Kh�lnx− lnxl��(7)

where h is the bandwidth and Kh�·� = h−1K�·/h� for some symmetric kernel
weight function K�·� that integrates to one. We assume the bandwidth h satisfies
h → 0 and nh → � as n → �. Under standard conditions the estimator (5) is
consistent and asymptotically normal; see Härdle (1990) and Härdle and Linton
(1995). Additionally, provided the same bandwidth and kernel are used to esti-
mate each gj�lnx�, adding-up across the share equations will be automatically
satisfied for each lnx and there is no efficiency gain from combining equations.
This mirrors the invariance result for SURE systems with identical regressors
(see Deaton (1983), for example).

14 Hausman and Newey (1995) assume continuous price and income variation.
15 Below we discuss how we allow for the endogeneity of lnx in the Engel curve regression

equation.
16 See Muellbauer (1976) and the empirical investigations by Working (1943) and Leser (1963).

These are the preferences that underly the popular Translog (Jorgenson, Lau, and Stoker (1982))
and Almost Ideal (Deaton and Muellbauer (1980)) demand systems.
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nonparametric engel curves 217

3�2� Demographic Composition and Semiparametric Estimation

Household expenditures typically display variation according to demographic
composition. A fully nonparametric approach would be to stratify by each distinct
household demographic type and estimate each Engel curve by nonparametric
regression within each cell. Given that this would result in relatively small sample
sizes within each cell, we choose to use a semiparametric specification to pool
across household types.
Let zi represent a vector of discrete household composition variables for each

household observation i. A simple semiparametric specification would be to
assume partial linearity (see Robinson (1988)):

wij = gj�lnxi�+ z′i�j +�ij(8)

with

E��ij �zi� lnxi�= 0 and var��ij �zi� lnxi�= �2
j �zi� lnxi��(9)

in which �j represents a finite parameter vector of household composition effects
for commodity j and gj�lnxi� is some unknown function as in (3).
Although the partially linear model (8) motivates the semiparametric approach

taken in this paper, consideration of the integrability conditions indicates that
some modification is required. This is because the additive structure underlying
(8), together with the Slutsky symmetry conditions,


wj


 lnpk

+wk


wj


 lnx
= 
wk


 lnpj

+wj


wk


 lnx
�(10)

requires that g�·� be linear.

Proposition 4: Suppose that budget shares have a form that is additive in func-
tions of lnx and demographics

wj�lnp� lnx� z�=mj�lnp� z�+gj�lnp� lnx��(11)

If (i) Slutsky symmetry (10) holds and (ii) the effects of demographics on budget
shares are unrestricted in the sense that mj can vary in any way with z, then gj�·� is
linear in lnx:

This proposition demonstrates that the additive form given in (11) will only be
consistent with utility maximization if we restrict the way in which demographics
affect budget shares, or if preferences are Piglog. That is gj�lnx� is linear in lnx
for all j .
An alternative specification that we adopt that does not impose restrictions on

the form of gj , is the following extension of the partially linear model:

wij = gj�lnxi−��z′i���+ z′i�j +�ij(12)
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218 r. blundell, m. browning, and i. crawford

in which ��z′i�� is some known function of a finite set of parameters �.17 This
function is common across share equations and can be interpreted as the log of a
general equivalence scale for household i.18 Interestingly, the extended partially
linear model (12) is precisely the shape invariant specification considered in the
work on pooling nonparametric regression curves by Härdle and Marron (1990),
Härdle and Jerison (1988), and Pinske and Robinson (1995).
To examine the shape invariant restrictions implicit in (12) we define s =

0�1� � � � � S distinct household types of group size ns , and let zs represent the cor-
responding demographic structure for each group normalized such that for the
base group s = 0, ��z0

′
i ��= z0

′
i �j = 0. The share equation for the base group (e.g.

a couple with no children) becomes19

w0
ij = g0

j �lnxi�+�0
ij �(13)

while for the remaining s = 1� � � � � S groups (e.g. couples with different numbers
of children) the share equations become

ws
ij = gs

j

(
lnxi−�

(
zs′i �

))+Zs′
i �j +�s

ij �(14)

For any distinct household type zsi the shape invariance restrictions relative to
the base group may be written

gs
j �lnxi�= g0

j

(
lnxi−�

(
zs′i �

))+ zs′i �j �(15)

If the �j and � parameters for j = 1� � � � �J − 1 were known, then the shape
restricted gj could be estimated by kernel regression on the transformed data
lnxi−��zs′�� and ws

ij − zs′�j , pooled across the household types s = 0�1� � � � � S.
We replace the �j and � by

√
n consistent estimators and note that the asymptotic

properties of the kernel regression estimates of gj on the transformed data are
unaffected. The choice of estimator for �j and � extends a method developed in
the Härdle and Marron (1990) and Pinske and Robinson (1995) papers. The idea
is to replace each gs

j �lnxi� by its unrestricted Nadaraya-Watson kernel regression
estimator and choose �j and � so as to minimize some weighted quadratic loss.20

Define ��̂j � �̂� as the value of ��j ��� that minimizes the integrated squared
loss function

L�����=
S∑

s=1

J−1∑
j=1

∫ x̄

x
��js�lnx����j ��

2�s�j�lnx�d lnx(16)

17 Blundell, Duncan, and Pendakar (1998) compare the semiparametric specification used here with
this more general alternative and find that it provides a good representation of demand behavior for
households in the British FES used in this study.

18 For example, we may choose ��z′i��= ln�z′i�� where � is the vector of corresponding equivalence
scales. See Pendakur (1998), for example.

19 In the remainder of this subsection we suppress the bandwidth parameter and use superscripts
to represent the different demographic groups.

20 In order to estimate these parameters there is no particular reason to use a kernel estimator for
this shape invariant model. An attractive alternative semi-parametric estimator would be to adapt
the sieve procedure in Ai and Chen (2000), for example.
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nonparametric engel curves 219

where � ′ = �� ′
1� � � � ��

′
J−1� and where x and x̄ are integration limits on the log

of expenditure. The �js term is given by

�js�lnx����j �= rsj f
0− f sr0j �lnx−��zs′�̂��− zs′�j f

sf 0�lnx−��zs′�̂��(17)

where �s is a group specific weight (ns/n in our specification) and �j�lnx�
is an equation-specific weighting function.21 This choice is equivalent to using
(f sf 0�lnx−��zs′�̂��2 as a weighting scheme for the Härdle and Marron (1990)
estimator (16), and is precisely the estimator for random designs as suggested by
Pinske and Robinson (1995). We apply this approach to our data using the pre-
dictions from the pooled model to estimate the rsj terms in the loss function and
implement a grid searching over a plausible range for � to find the values for
which the loss function attains a minimum within each year of our data.22

For the case where there are just two distinct groups S = 1 and one equation
J −1= 1, Pinske and Robinson show

√
n-consistency and asymptotic normality of

this estimator of �����. They also show that the first order asymptotic properties
of the kernel regression estimator of ĝ under the shape invariant restrictions are
unaffected by the use of �̂ ′� �̂ in place of ���.23 As noted above the latter result
is particularly useful in our case as we are not directly interested in � ′�� but
rather in gj . Proposition 5 below extends their conditions for

√
n-consistency of

��̂ ′� �̂� to the more general case of many groups and many equations. Given this
result we can then proceed to estimate the nonparametric Engel curves pooled
across household types using the transformed variables �wij − z′i�̂j � and �lnxi −
��z′i�̂�).

24

Proposition 5: Let ��̂ ′� �̂′� be the values of ��j ��� that minimize the inte-
grated squared loss function (16). Under Assumptions A1–A8 (see Appendix A),
��̂ ′� �̂′� is a

√
n-consistent estimator for �� ′

0� �
′
0�.

21 Note

�a� gs
j �lnx�= zs′i �j +g0

j �lnx−��zs′i ��� ⇐⇒ f̂ 0�lnx−��zs′i ���r̂
s
j �lnx�

= f̂ s�lnx�r̂0j �lnx−��zs′i ���+ f̂ s�lnx�f̂ 0�lnx−��zs′i ���z
s′
i �j

for all x. To eliminate the random denominators in the kernel regression terms gs
j and g0

j , the
expression (17) can be weighted by the product of densities f sf 0 where f s is evaluated at �lnx−
��zs′�̂��.

22 We find that the optimum value for exp��� lies in the range 1.2 to 1.5 over the period. We choose
the value 1.29 which is very close to the average of our estimates, and is the OECD equivalence
scale. See Blundell, Duncan, and Pendakur (1998) for a further discussion of the estimation of this
equivalence scale parameter.

23 In proving this result Pinske and Robinson (1995) allow for a different bandwidth, nh3 →� and
h→ 0 as n→�, which is more than satisfied by our choice of bandwidth, which is proportional to
n1/5.

24 An alternative estimator would be to adapt a minimum distance estimator for conditional
moment restrictions. This could also allow for endogeneity using an intrumental variable approach.
A first attempt at this for the shape invariant Engel curve model is presented in Blundell, Chen, and
Kristensen (2001).
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220 r. blundell, m. browning, and i. crawford

One important requirement for this proposition to hold (Assumption A6 in
Appendix A) is that f sf 0�lnx−��zs

′
�̂�� is bounded away from zero at the true

parameter value for �. In our application we distinguish household types by fam-
ily size with the base group being a couple without children and choose the log
transformation for the equivalence scale function �. Since the scale for children
relative to a childless couple is assumed to be bounded between zero and one
half for each child, condition A6 is preserved.

3�3� Endogeneity of Total Expenditure

To adjust for endogeneity we adapt the control function or augmented regres-
sion technique (see Blundell and Powell (2002), for example) to the semi-
parametric Engel curve framework. Consider first the nonparametric Engel curve
(3). Suppose lnx is endogenous in the sense that for each commodity

E��ij � lnxi� �= 0 or E�wij � lnxi� �= gj�lnxi��(18)

In this case the nonparametric estimator will not be consistent for the function
of interest. To be precise, it will provide the appropriate counterfactual: how
will expenditure share patterns change for some ceteris paribus change in total
expenditure?
Suppose there exist instrumental variables � i such that

lnxi = � ′� i+vi with E�vi�� i�= 0�(19)

In the application below we take the log of disposable income as the excluded
instrumental variable for log total expenditure, lnx. Further, we make the fol-
lowing key assumptions:

E�wij � lnxi� � i�= E�wij � lnxi� vi�(20)

= gj�lnxi�+�jvi ∀ j�(21)

This implies the augmented regression model

wij = gj�lnxi�+�jvi+�ij ∀ j(22)

with

E��ij � lnxi�= 0 ∀ j�(23)

Note that gj�lnxi�=E�wij � lnxi�−E�vi� lnxi�, eliminating gj�lnxi� using (22),
yields

wij −E�wij � lnxi�= �vi−E�vi� lnxi���j +�ij �(24)

which suggests a weighted instrumental variable estimator for �j by replacing the
conditional means E�wij � lnxi� and E�vi� lnxi� by their Nadaraya-Watson ker-
nel regression estimators ŵ�lnxi� and v̂�lnxi� respectively. Suitable instruments
would be I�f̂ �lnxi� > b�vi.
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nonparametric engel curves 221

The resulting estimator of g�lnxi� is given by

ĝ�lnxi�= ŵ�lnxi�− v̂�lnxi��̂j �(25)

Note that the unobservable error component v in (24) is unknown. In estimation
v is replaced with the first stage reduced form residuals

ṽi = lnxi− �̂ ′� i(26)

where �̂ is the least squares estimator of � . Since �̂ and �̂ converge at
√
n the

asymptotic distribution for ĝ�lnxi� follows the distribution of ŵ�lnxi�− v̂�lnxi��j .
Moreover, a test of the exogeneity null, H0 � �j = 0, can be constructed from this
least squares regression.25 In application we apply this procedure by augmenting
the semi-parametric model (12).

3�4� Unobserved Heterogeneity

We turn now to the relationship between nonparametric Engel curves and the
local average demands for a set of heterogeneous agents. For this discussion we
omit dependence on observed characteristics z. There are two alternative ways of
interpreting the impact of heterogeneity on the average demands estimated from
nonparametric Engel curve regression. We could assume individual demands are
rational and then ask for conditions on preferences and/or heterogeneity that
imply rationality for average demands. This is the approach of McElroy (1987),
Brown and Walker (1989), and Lewbel (2001). Alternatively, we could make no
rationality assumptions on individual demands and simply ask what conditions
enable average demands to satisfy rationality properties. This is the approach of
Becker (1962), Grandmont (1992), and Hildenbrand (1994).
Suppose for each good j we write average budget shares as

E�wj � lnx�p�= gj�lnx�p��(27)

then, if we let � represent a vector of unobserved heterogeneity terms with
E��� ln x�p� = 0, a necessary condition for the average budget shares recovered
by the nonparametric analysis discussed above to be equal to average budget
shares is that

wj = gj�lnx�p�+�j�lnx�p�
′��(28)

25 This method can be viewed as a special case of the method proposed in Newey, Powell, and
Vella (1999). They adopt a series estimator for the regression of w on lnx and v. This generalizes the
form of (19) and (22). We chose not to follow the fully nonparametric control function approach here
for two reasons. First in Blundell, Duncan, and Pendakur (1998) it is shown that adding additional
terms makes little difference for estimating Engel curves on a sample from a single year of British
Family Expenditure Survey data. Second, for the computations in this study we would also have to
make this adjustment for each share equation in each time period and would also have to adjust the
asymptotics accordingly.
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222 r. blundell, m. browning, and i. crawford

Notice this allows for quite different tastes across agents. In particular, the first-
order price and income responses for agents can vary in any way. Thus a good
may be a luxury for one person and a necessity for another.
The function gj�lnx�p� gives mean responses to changes in prices conditional

on a given level of total expenditure. Thus we can use this function for posi-
tive analysis, for example to recover the revenue implications from a change in
taxes. Additionally, the utility function that is associated with an integrable set
of demands gj�lnx�p� is a prime candidate for use in equilibrium models that
assume a representative agent. In our analysis below we apply the GARP tests
to the mean function gj�lnx�p�. This averaging is very different from the stan-
dard aggregation structure in consumer theory developed by Gorman (1953) and
Muellbauer (1976). In particular, we are not aggregating across different total
budgets (incomes). Additionally, we are not assuming that individual demands
are necessarily integrable; that is, for given � we can have that the Slutsky con-
ditions may fail for wj�lnx�p���. In this respect, our structure is closer to that
of Hildenbrand (1994) and Grandmont (1992). However, their analysis shows
conditions for average demands to satisfy the Weak Axiom of Revealed Prefer-
ence (WARP; see Varian (1982)) but GARP requires more. GARP implies the
Slutsky symmetry conditions. If we wish to impose integrability at the individ-
ual level, then there are restrictions on the �j�x�p� and the distribution of the
heterogeneity terms (see McElroy (1987), Brown and Walker (1989), and Brown
and Matzkin (1995)).26 Indeed, Brown and Walker (1989) show that for Slutsky
symmetry to hold, �j�x�p� must be either a function of x or p.
The reason that we are interested in testing for GARP using these mean

responses is that without such a rationality condition holding, it is difficult to
see how we would ever conduct coherent welfare analysis of nonmarginal price
changes. The heterogeneity conditions for using the mean function for the wel-
fare analysis for consumers of a nonmarginal price change are, however, stronger
than the conditions given in (28), which suffice for positive analysis. In an impor-
tant paper McElroy (1987) considers the case of estimating cost function and
share equation parameters for production analysis. For consumer welfare mea-
sures these results need to be extended. Consider the welfare measure based
on the second-order approximation27 of the log cost function for a nonmarginal
price change � lnpj :

E

[
� ln c
� lnpj

∣∣∣∣x�p
]
= �wj �x�p�+

1
2
E�Sjj �x�p�� lnpj(29)

where Sjj is the Slutsky substitution term

Sjj =

wj


 lnpj

+ 
wj


 lnx
wj�

26 If all preference parameters are to be heterogeneous, then preferences are essentially restricted
to the class of Piglog demands (see Lewbel (1996), for example).

27 See Banks, Blundell, and Lewbel (1996), for example.
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nonparametric engel curves 223

Consequently in addition to the direct price effect on the share, (29) includes the
compensating income effect 
wjwj/
 lnx. This introduces a bias term additional
to that considered in McElroy (1987). Using (28) the mean welfare measure (29)
has the form

E

[
� ln c
� lnpj

∣∣∣∣x�p
]
= gj+

1
2

(

gj


 lnpj

+ 
gj


 lnx
gj

)
� lnpj+

1
2


�′
j


 lnx
���j� lnpj(30)

where E���′�x�p	=��. The first two terms on the right-hand side of this expres-
sion can be computed using the mean function gj�·� so that our mean function
gives an exact first-order welfare effect. It also gives second order effects if the
final bias term is zero. This will be the case if, for example, the heterogeneity
term ��lnx�p� is independent of total expenditure so that all households have
the same marginal income effects.28

In general the error term in (28) will represent measurement and optimiza-
tion error as well as preference heterogeneity so it would seem natural to work
with local average demands. Averaging locally to each x can eliminate unob-
served heterogeneity, measurement error, and (zero mean) optimization errors
in demands but preserves any nonlinearities in the Engel curve relationship for
each price regime.

4� an empirical investigation on repeated cross-sections

4�1� Data

The data were drawn from the repeated cross-sections of household-level data
in the British Family Expenditure Survey (1974 to 1993). The FES is a random
sample of around 7,000 households per year. From this we used a subsample
of all the two-adult households, both those with and those without children.29

The first and last percentiles of the within-year total expenditure distribution
in this subsample were then trimmed out. This selection resulted in a sample
size of 75,753 households (between 3,386 and 4,086 in each year). Expenditures
on nondurable goods by these households were aggregated into 22 commodity
groups and chained Laspeyres price indices for these groups were calculated
from the subindices of the UK Retail Price Index giving 20 annual price points
for each of our 22 commodity groups.
The commodity groups are nondurable expenditures grouped into: beer, wine,

spirits, tobacco, meat, dairy, vegetables, bread, other foods, food consumed
outside the home, electricity, gas, adult clothing, children’s clothing and footwear,
household services, personal goods and services, leisure goods, entertainment,
leisure services, fares, motoring and petrol.30 Descriptive statistics for total
nominal expenditure are given in Table V of Appendix D.

28 Note, however, that this condition is sufficient and not necessary; weaker assumptions suffice to
make the bias term zero or small.

29 A further selection of households with cars was made in order to allow us to include motoring
expenditures and, in particular, petrol as commodity groups.

30 More precise descriptions of components of the commodity groups are available from the
authors.
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224 r. blundell, m. browning, and i. crawford

4�2� Estimated Engel Curves and Normal Goods

The nonparametric regression results are based on a Gaussian Nadaraya-
Watson kernel estimation under the shape invariance restrictions (12). Adaptive
kernel bandwidths31 were used throughout with the first round bandwidth chosen
by cross-validation [cf. Härdle (1990)].
The three figures (2 to 4) show the estimated Working-Laser Engel curves

(budget share against log total nominal expenditure) for 3 of our 22 commodities,
for 3 of our 20 periods (1975 (circles), 1980 (squares), 1985 (triangles)). These
represent a typical necessity (bread), a luxury (entertainment), and beer which
roughly displays a quadratic logarithmic Engel curve behavior. On each Engel
curve we plot the points on the chronological SMP paths that correspond to the
1st, 10th, 25th, 50th, 75th, 90th, and 99th percentile points in the base year (1974).
Pointwise 95% confidence bands at these points are also drawn. Note that, as we
would expect, the precision is much lower at the tails of the outlay distribution.
The left to right drift of the Engel curves apparent in these figure illustrates the
growth in nominal expenditure that took place between these periods.32

4�3� Testing GARP

At each stage in the empirical analysis of the GARP conditions we will be
comparing weighted sums of kernel regressions. The pairwise comparison p′

tqt >
p′
tqs can be written

xt >
J∑

j=1

p
j
t

p
j
s

ĝj
s �xs�xs for s �= t(31)

where ĝ
j
s �xs� is the estimated budget share in equation (3). Noting that adding-

up implies
∑J

j=1 ĝ
j
t �xt� ≡ 1 for all t, condition (31) conveniently reduces to the

comparison

�ts >
J−1∑
j=1

�
j
tsĝ

j
s �xs��(32)

31 The adaptive bandwidth is h= h
 where h is the pilot bandwidth and


i =
[
f̂ h�lnxi�

�

]− 1
5

where � = exp
[
n−1

∑
i

ln f̂ h�lnxi�
]
�

see Blundell and Duncan (1998).
32 A full set of nonparametric regression results is available from the authors on request. These

results confirm the normal goods assumption used in the discussion above.
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nonparametric engel curves 225

Figure 2.—The Engel curve for bread.

Figure 3.—The Engel curve for entertainment.
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226 r. blundell, m. browning, and i. crawford

Figure 4.—The Engel curve for beer.

where

�
j
ts =

(
p
j
t

p
j
s

− pJ
t

pJ
s

)
and �ts =

(
xt

xs

− pJ
t

pJ
s

)

are known constant weights in each price regime.
To test GARP we will need to evaluate the inequality (32) at particular points

on an SMP path. Since the nonparametric Engel curve has a pointwise asymp-
totic normal distribution, we can evaluate the distribution of each ĝ

j
t �x� at any

point x.33 For (32) we need to find the distribution of the weighted sum of

33 Briefly, for bandwidth choice h and sample size n the variance can be well approximated at point
x for large samples by

var�gj�x��� � 2
j �x�cK

nhfh�x�

where cK is a known constant and fh�x� is an (estimate) of the density of x,

� 2
j �x�= n−1

n∑
j=1

�jh�x��wij −gj�x��
2�

with weights from the kernel function

�jh�x�=Kh�x−xj�/fh�x��

See Härdle (1990).
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nonparametric engel curves 227

correlated kernel regression estimates
∑J−1

j=1 �
j
tsĝ

j
s �x�. However, since on any SMP

path in any period the ĝj �x� kernel estimates for each good j are to be evaluated
using the same kernel smoother and the same bandwidth, the expression for the
asymptotic variance of the weighted sum simplifies. In particular, the constants
associated with the kernel function and the density fh�x� itself will be common
to all variance and covariance terms. Pointwise standard errors and confidence
bands for expression (32) are therefore tractable and are used extensively in the
empirical application below.
When calculating demands on SMP paths we allow for the fact that the total

expenditure levels in all periods except for the first are chosen on the basis of
the estimated demands in the previous periods. For example, for a SMP path
constructed such that x̃t = p′

tqt = p′
tqt−1�xt−1�, the expenditure level x̃t is set such

that

x̃t =
J∑

j=1

p
j
t

p
j
t−1

ĝ
j
t−1�xt−1�xt−1

and therefore x̃t depends on the estimate of ĝt−1�xt−1� from the previous period.
The test of qt−1P 0qt requires that we have an estimate of var��t−1� t −� ′

t−1� t ĝt�
and that this takes into account that x̃t is set according to estimates of gt−1�xt−1�
(and likewise that x̃s is set according to estimates of ĝr �x̃r �, etc.). This is derived
using the standard delta-method approach applied sequentially.
To implement our procedure we need to choose a set of SMP paths along

which to evaluate GARP. To do this we select the starting points for each path to
be at the 1st percentile, 1st decile, 1st quartile, median, 3rd quartile, 9th decile,
and 99th percentile points in the x distribution for 1974, the first year in our data
set. The comparison points for the following years are chosen along the SMP
path as described in Section 2.2. By Proposition 1 we know that if this path passes
GARP, then no path that preserves the same preference ordering will violate
GARP. The annual median and mean (non-SMP) paths are also computed for
comparison.
Table I shows the number and pattern of rejections for the system of 22 goods.

Each column provides a count of the total number of rejections according to
inequality (32). In each case a one sided test of size � is used, based on the
pointwise asymptotic distribution of

∑J−1
j=1 �

j
tsg

j
s �xs�. The column headed � = 1

counts the number of rejects using inequality (32) directly without adjustment for
estimation error in g

j
s �xs�. In the remaining columns each inequality is adjusted

by a one-sided interval. From the first of these columns GARP can be seen to be
rejected for a large number of points, especially in the upper tail of the outlay
distribution.34 However, these rejections are not statistically significant. Very little
adjustment is needed to dramatically reduce the number of rejections.35

34 Our interest is primarily in the points commonly used in the analysis of income distributions, i.e.
interdecile points, interquartile points, and the median. We include the 1st and the 99th percentile
points for completeness.

35 We have not attempted to compute the size of the implicit joint test.
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228 r. blundell, m. browning, and i. crawford

TABLE I

Number of Rejections of GARP, by Size of Test

�
Starting Point for
Each Comparison Path 1.0 0.30 0.20 0.10 0.05

SMP paths:
1st percentile 1 0 0 0 0
1st decile 1 1 0 0 0
1st quartile 1 0 0 0 0
Median 1 1 1 1 0
3rd quartile 2 2 0 0 0
9th decile 11 6 3 1 0
99th percentile 28 21 1 0 0

Median path 0 0 0 0 0
Mean path 0 0 0 0 0

It is also interesting to observe that there are no rejections, even in the raw
data, for the median or mean (non-SMP) paths. This is consistent with the obser-
vation that arises in tests of GARP on aggregate data that if the budget con-
straint is allowed to shift much either way between comparison points, as it does
for median or mean total expenditure, then there is little chance of being able
to find demands that cannot be rationalized.

4�4� Continuous Subperiods which Satisfy GARP

Using the same set of SMP comparison points as in Table I, Table II presents
the continuous subperiods of the data that satisfy GARP. For example, the
chronological SMP path that starts at median total budget in 1974 runs into a
violation of GARP when 1986 is added to the sequence. In this case it is the pair
of years 1985 and 1986 that fail to satisfy GARP: the SMP path is constructed
to reflect the ordering q86R

0q85 but we find that q85P
0q86, giving the violation.

TABLE II

Continuous Periods that Satisfy GARP

Periods

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

1st

10th

25th

50th

75th

90th

99th
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nonparametric engel curves 229

Interestingly, the table also shows the largest continuous subperiod in which
we are able to bound the indifference curve. For example, using the reference
demand bundle at median total outlay in 1974 we are able to bound a curve
using the expansion paths and price data for 1974 to 1985 inclusive (we are also
able to bound curves using reference demands at any within-year median total
expenditure level or reference demands at any point on the chronological SMP
path between 1974 and 1985). However, if we add 1986 to the set of admissible
periods, the algorithm fails to converge. We then start again using the 1986 point
on the median SMP path as our starting point. In all, for the median we find the
entire period separates down into two subperiods within which we are able to
bound an indifference curve. Similarly the 1st and 9th decile paths break into two
and four subperiods respectively, while the 99th percentile breaks down into five.
We can use this knowledge of periods in which GARP is satisfied in a number

of ways. To illustrate two of them we present bounds on the base-period reference
cost-of-living index, and bounds on year-to-year inflation rates.

4�5� Bounds on the True Cost-of-living Index

Table II shows that preferences on the SMP paths starting at the 10th and 90th
percentile points, the quartiles, and the median of the base period total budget
distribution all satisfy integrability, at least up until 1985. We use the data for
this period and the algorithms described in Section 2.4 to bound the true cost-
of-living index c�P85�q74�/c�P75�q74� for a reference demand bundle at each of
these points in the 1974 total budget distribution. Figure 5 shows the bounds for
each reference budget in 1985, with 1974= 1000. It is interesting to note that the
bounds for 10th and 90th percentile points do not overlap and indicate greater
rise on the cost of living for poorer, compared to richer, households over this
period.
We also compare the performance of the GARP bounds for the true index

with other nonparametric bounds and other popular price index formulae over a
longer period. This is shown in Table III. The first panel shows the price index
numbers for the Paasche, Laspeyres, and the chained Törnqvist. These indices
can also be thought of as corresponding exactly to true indices under various
assumptions regarding the precise form of preferences.36 The second panel in
Table III shows various nonparametric bounds on the true index referenced at q74
where q74 = q74�x� evaluated at 1974 median total budget. The bounds provided
by Lerner (l935–36) are simply a reflection of the idea that the true index (being
a weighted average of price changes) must lie somewhere between the maximum
and the minimum ratio of the price changes of all goods: i.e.

min
j

{
p
j
t

p
j
74

� j = 1� � � � � J
}
≤ c�pt�q74�

c�p74�q74�
≤max

j

{
p
j
t

p
j
74

� j = 1� � � � � J
}
�

36 The Paasche and Laspeyres, for example, are exact for Leontief preferences; the Törnqvist is
exact for translog. See Diewert (1976, 1981).
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230 r. blundell, m. browning, and i. crawford

Figure 5.—GARP cost-of-living index bounds in 1985 by percentile point (1974= 1000).

Pollak (1971) improves this by linking Lerner’s result with the original Konüs
(1924) result that the Laspeyres index approximates the true base-referenced cost
of living index from above, i.e.

min
j

{
p
j
t

p
j
74

� j = 1� � � � � J
}
≤ c�pt�q74�

c�p74�q74�
≤ p′

tq74

p′
74q74

�

The bounds from classical revealed preference restrictions of the type used
by Varian (1982) and calculated using the demands in each period at median
within-period total budget are also reported (labelled classical revealed prefer-
ence (RP)). None of these nonparametric solutions have any trouble in pro-
viding bounds for the entire period. The classical bounds, for example, do not
violate GARP for the reasons explained above. However, the bounds derived
by our method must take account of the break between 1985 and 1986. This is
because when we seek to derive the bounds using the data from both 1985 and
1986 the algorithms do not converge (convergence requires GARP as shown in
Propositions 2 and 3). Instead we bound the indifference curves using prices and
expansion paths from all periods excluding 1986. We then use these to bound
the cost-of-living index using all of the price data (including 1986) as described
in Section 2.2.
We find, confirming the results in Varian (1982) and Manser and McDonald

(1988), that classical nonparametric/revealed preference bounds based on the
median demand data gives little additional information on the curvature of the
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TABLE III

Popular Price Indices, Nonparametric and GARP Bounds, 1974 to 1993

Price Indices Nonparametric/RP Bounds

Year P L T Lerner Pollak Classical RP GARP

74 1000 1000 1000 1000 1000 1000 1000
75 1215 1232 1223 [1025, 1721] [1025, 1232] [1206, 1232] [1214, 1228]
76 1516 1530 1528 [1182, 1985] [1182, 1530] [1431, 1530] [1514, 1530]
77 1762 1787 1783 [1239, 2590] [1239, 1787] [1700, 1787] [1761, 1781]
78 1931 1957 1906 [1385, 2513] [1385, 1957] [1894, 1957] [1936, 1957]
79 2086 2119 2121 [1461, 2636] [1461, 2119] [2058, 2119] [2093, 2119]
80 2463 2514 2514 [1734, 3142] [1734, 2514] [2442, 2514] [2478, 2509]
81 2780 2841 2841 [1770, 4077] [1770, 2841] [2687, 2841] [2801, 2838]
82 3093 3189 3178 [1821, 4287] [1821, 3189] [2983, 3189] [3123, 3172]
83 3260 3381 3371 [1828, 4924] [1828, 3381] [3197, 3381] [3314, 3369]
84 3408 3558 3534 [1790, 4921] [1790, 3558] [3335, 3558] [3473, 3530]
85 3551 3733 3700 [1836, 5086] [1836, 3733] [3546, 3733] [3634, 3696]
86 3700 3911 3876 [1900, 5463] [1900, 3911] [3595, 3911] [3808, 3873]
87 3825 4035 3991 [1920, 6049] [1920, 4035] [3626, 4035] [3918, 3989]
88 3922 4163 4113 [1923, 6143] [1923, 4163] [3702, 4163] [4036, 4110]
89 4130 4379 4322 [1996, 6397] [1996, 4379] [3688, 4379] [4240, 4319]
90 4406 4669 4608 [2079, 6637] [2079, 4669] [3739, 4669] [4521, 4604]
91 4723 5044 4967 [2109, 7507] [2109, 5044] [4073, 5044] [4871, 4963]
92 4996 5437 5323 [2091, 8353] [2091, 5347] [4038, 5437] [5214, 5318]
93 5177 5650 5499 [2066, 9098] [2066, 5650] [3990, 5650] [5382, 5493]

Notes: P = Paasche, L = Laspeyres, T = Chained Törnqvist/Divisa.

indifference curve through commodity space and hence the bounds on the true
index are wide. However, by the use of expansion paths we can dramatically
improve these bounds. This is illustrate in Figure 6 in which the GARP bounds
are represented by the solid lines and the classical revealed preference bounds
by the dashed line.
Comparing the GARP bounds on the true, fixed base cost-of-living index to the

three price index number formulae, we see that the chained Törnqvist performs
the best as an empirical approximation to the true index.37 This is despite the
fact that, as an index in which reference utility is updated in each period, the
Törnqvist cannot strictly be compared to a fixed base true index. The Laspeyres,
which is a first order approximation to the true index in question, understates
the true increase in the cost of living by between about 3% and 5% by the end
of the period.

4�6� Bounds on Annual Inflation Rates

As well as deriving bounds on fixed base cost-of-living indices, revealed pref-
erence restrictions can also be calculated on annual inflation rates in which the

37 Comparisons with other price indices are available from the authors.
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232 r. blundell, m. browning, and i. crawford

Figure 6.—GARP bounds and classical RP bounds, 1974–1993.

reference demand bundle is updated in each period. The 1990 annual inflation
bound rate for example is calculated from the bound on the 1989-based cost-
of-living index c�p90�q89�/c�p89�q89�. The results are shown in Table IV where
the improvement afforded by the GARP bounds over the previously available
nonparametric bounds is apparent. Indeed the tightness of the GARP bounds
is remarkable. Again the Törnqvist performs the best of the index number for-
mulae followed by the Laspeyres, which is often close to the top of the GARP
bounds. Note that the inflation rate for the year to 1986 is missing from the
GARP bounds because of the GARP violation between these two years.

5� summary and conclusions

In this paper we have applied nonparametric statistical methods to the non-
parametric theory of consumer demand. We exploit the idea that price taking
individuals in the same market at the same time face the same relative prices,
in order to smooth across the demands of individuals for each common price
regime. We first show that knowledge of budget expansion paths can improve the
power of nonparametric tests of revealed preference theory. In cases in which
revealed preference conditions are violated we could use an Afriat-Varian con-
ditional demand approach but we leave that for future work. We also show how
budget expansion paths can be used to place tight bounds on level sets of utility in
commodity space and hence to provide tight nonparametric bounds on true cost-
of-living indices. We present algorithms for the computation of these bounds.
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TABLE IV

Annual Inflation Rates for Popular Price Indices, Nonparametric and GARP

Bounds, 1975 to 1993

Price Indices Nonparametric/RP Bounds

Year P L T Lerner Pollak Classical RP GARP

75 21�48 23�16 22�28 [2.50, 72.10] [2.50, 23.16] [20.59, 23.16] [21.47, 22.85]
76 24�60 25�27 24�93 [5.00, 54.13] [5.00, 25.27] [17.86, 25.27] [24.57, 25.27]
77 16�54 16�89 16�71 [4.82, 30.51] [4.82, 16.89] [13.82, 16.89] [16.50, 16.80]
78 9�85 10�05 9�95 [−12�93, 20.17] [−12�93, 10.05] [−12.93, 10.05] [9.83, 10.05]
79 8�13 8�31 8�22 [0.17, 15.39] [0.17, 8.31] [0.17, 8.31] [8.13, 8.31]
80 18�29 18�74 18�51 [7.75, 49.92] [7.75, 18.74] [8.00, 18.74] [18.56, 18.55]
81 12�92 13�11 13�02 [2.08, 29.76] [2.08, 13.11] [9.22, 13.11] [13.11, 13.11]
82 11�53 12�18 11�85 [−0�93, 32.21] [−0�93, 12.18] [8.69, 12.18] [11.51, 12.02]
83 5�95 6�18 6�06 [−6�97, 25.32] [−6�97, 6.18] [−6�97, 6.18] [6.05, 6.14]
84 4�80 4�91 4�86 [−2�06, 21.00] [−2�06, 4.91] [−2�06, 4.91] [4.88, 4.91]
85 4�65 4�72 4�69 [−3�18, 12.77] [−3�18, 4.72] [−3�18, 4.72] [4.72, 4.72]
86 4�77 4�73 4�75 [0.70, 8.64] [0.70, 4.73] [1.36, 4.73] —
87 2�89 3�04 2�97 [−10�30, 10.73] [−10�30, 3.04] [−0�22, 3.04] [2.88, 3.04]
88 3�06 3�04 3�05 [−4�50, 8.87] [−4�50, 3.04] [−0�60, 3.04] [3.04, 3.04]
89 5�07 5�11 5�09 [−0�39, 10.48] [−0�39, 5.11] [−0�39, 5.11] [5.06, 5.10]
90 6�59 6�65 6�62 [1.38, 10.50] [1.38, 6.65] [1.38, 6.65] [6.63, 6.63]
91 7�78 7�81 7�80 [1.45, 14.94] [1.45, 7.81] [8.04, 7.81] [7.81, 7.81]
92 7�07 7�24 7�16 [−0�85, 18.90] [−0�85, 7.24] [6.59, 7.24] [7.09, 7.24]
93 3�28 3�34 3�31 [−8�03, 9.58] [−8�03, 3.34] [−7�69, 3.34] [3.34, 3.34]

Notes: P = Paasche, L = Laspeyres, T = Törnqvist/Divisa.

Expansion paths can be estimated by nonparametric Engel curves and this
is shown to provide a useful stochastic structure within which to examine the
consistency of individual data and revealed preference theory. The implications
for pooling across households with different demographic composition are also
examined and an appropriate semi-parametric estimator is derived. If continuous
price data were available for one or more commodities, then our approach could
be usefully combined with that of Hausman and Newey (1995).
Using a long time series of repeated cross-sections from the 1974–1993 British

Family Expenditure Surveys we estimate semi-parametric Engel curves and exam-
ine whether revealed preference theory is rejected. We show that GARP is not
rejected for long periods, particularly when we allow for sampling/stochastic vari-
ation. We derive bounds on cost-of-living indices from our analysis that are
much tighter than those based on the revealed preference restrictions implied by
demands at, say, annual mean total expenditure. We also note that the chained
Törnqvist (approximate Divisia) cost-of-living index performs well as an empiri-
cal approximation to the true base-period referenced index.

University College London, Department of Economics, Gower Street, London,
WC1E 6BT and Institute for Fiscal Studies, London; r.blundell@ucl.ac.uk;
http://www.ucl.ac.uk/economics;
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APPENDIX A: Proofs of Lemmas and Propositions

Proof of Proposition 1: Without loss of generality we take the GARP rejecting preference
ordered subsequence to be �qs�x̂s��qt�x̂t��qu�x̂u��. We have:

(i) x̂s = p′
sqs�x̂s�≥ p′

sqt�x̂t� and
(ii) x̂t = p′

tqt�x̂t�≥ p′
tqu�x̂u� and

(iii) x̂u = p′
uqu�x̂u� > p′

uqs�x̂s�.
We consider the SMP path for this preference ordered subsequence and show that it too rejects
GARP. The SMP path �qs�x̃s��qt�x̃t��qu�x̂u�� has:

(iv) x̃t = p′
tqt�x̃t�= p′

tqu�x̂u� and
(v) x̃s = p′

sqs�x̃s�= p′
sqt�x̃t�.

By constructions this is a preference ordered subsequence �qt�x̃t�R
0qu�x̂u� and qs�x̃s�R

0qt�x̃t�� so
that this subsequence rejects GARP if qu�x̂u�P

0qs�x̃s�; that is, if:
(vi) p′

uqu�x̂�u > p′
uqs�x̃s�.

Conditions (ii) and (iv) imply p′
tqt�x̂t� ≥ p′

tqt�x̃t�, which implies x̂t ≥ x̃t . This and conditions (i) and
(v) give

p′
sqs�x̂s�≥ p′

sqt�x̂t�≥ p′
sqt�x̃t�= p′

sqs�x̃s��

which implies x̂s ≥ x̃s . Finally, condition (iii) and normality imply p′
uqu�x̂u� > p′

uqs�x̂s� ≥ p′
uqs�x̃s�,

which is condition (vi); hence GARP is rejected for this subsequence. Q.E.D.

Proof of Proposition 2: Part A. We denote F �s� = �q1�q
�s�

2 � � � � �q�s�
T 	. The first step is to show

that as we iterate, we never move ‘up’ an expansion path. Formally, at iteration s+1 we have

q�s+1�
t ≤ q�s�

t �

To see this, consider q�s+1�
t ∈ F �s+1�. At iteration s+1, step (ii) of the algorithm takes the min over all

qw ∈ F �s� so that p′
tq

�s+1�
t � ≤ p′

tqw for all qw ∈ F �s�. Since the latter contains q�s�
t , we have the claimed

inequality. The next step is to show that if GARP and weak normality hold, then we have

∀ �t�u�� q�s+1�
t = qt

(
p′
tq

�s�
u

)
< q�s�

t �⇒ q�s�
u < qu

(
p′
uq

�s�
t

)
�

This is a ‘no swapping’ condition that states that if we change qt to be just revealed preferred to q�s�
u ,

then we never have that q�s�
u is revealed preferred to q�s�

t . To show this, note that the equality on the
left-hand side of the implication implies that q�s+1�

t Rq�s�
u . GARP and the inequality on the left-hand

side of the implication give

p′
uq

�s�
u ≤ p′

uq
�s+1�
t < p′

uq
�s�
t �

With the monotonicity result above this implies

q�s�
u = qu

(
p′
uq

�s�
u

)
< qu

(
p′
uq

�s�
t

)≤ qu

(
p′
uq

�s�
t

)

as claimed.
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Now define the set

�Q�q1�= �q � q is on some SMP path that finishes at q1	�

Thus we take all the subsequence of �2�3� � � T 	 (for example, (4, 2, 7)), construct the SMP paths
that finish at q1, and include all the points on these paths in �Q�q1�. Since there are only a finite
number of permutations of subsets of �2�3� � � T 	, this is a finite set. We now show that if a demand
ever enters F , then it is in this set; formally,

q�s�
t ∈ �Q�q1��

We prove this by induction. Consider first F �1� and q1
t . Step 2 of the algorithm gives for some u q�1�

t =
qt�p

′
tqu�p

′
uq1��. Thus �q

�1�
t �qu�p

′
uq1��q1� is an SMP path (with no second element if u= t). Thus all

the elements of F �1� are contained in �Q�q1�. To continue with the induction proof, suppose that all
of the elements of F �s� are on SMP paths. To show that all of the elements of F �s+1� are on SMP
paths, we need only consider an element that changes between iterations s and s+1:

q�s+1�
t = qt

(
p′
tq

�s�
u

)
< q�s�

t �

Since q�s�
u is in F �s� it is on an SMP path ending at q1. Denote the part of the path that begins at

q�s�
u by �q�s�

u � � � � �q1	. The no swapping condition above (which requires GARP) ensures that this
path does not contain a demand on the tth expansion path. Thus we put q�s+1�

t at the start of this
SMP path to create a new SMP path. Thus q�s�

t ∈ �Q�q1� for all t implies qs+1
t ∈ �Q�q1� for all t. Since

q�1�
t ∈ �Q�q1� for all t, this establishes the result.
The final part of the proof is to simply note that since our algorithm chooses points from a finite

set �Q�q1� and discards a finite number of points at each iteration (the ‘monotonicity’ condition), we
terminate in a finite number of steps.

Part B. �qt ≥ qB
t � ⇒ �qtRq1� follows from the construction of �Q�q1� in Part A. To prove the

converse let qtRq1. This requires that there be a preference ordered path that starts at qt and ends
at q1. Without loss of generality let this path be �qt �qu�qv�q1� so that

p′
tqt ≥ p′

tqu�(33)

p′
uqu ≥ p′

uqv�(34)

p′
vqv ≥ p′

vq1�(35)

Recalling that we denote the tth element of QB�q1� by qB
t , by step (ii) of the algorithm we have

p′
tq

B
u ≥ p′

tq
B
t �(36)

p′
uq

B
v ≥ p′

uq
B
u �(37)

p′
vq1 ≥ p′

vq
B
v �(38)

From (38) and (35) and weak monotonicity we have qv ≥ qB
v . This and (34) and (37) give qu ≥ qB

u .
From (36) and (33) we thus have qt > qB

t . Q.E.D.

Proof of Proposition 3: The proof is analogous to that for Proposition 2. Q.E.D.

Proof of Proposition 4: Given the budget share form of the Slutsky equation (10) and the
additive structure in (11) we have, by differentiating both sides of (10) with respect to lnx, then with
respect to z, that

mk
zg

j
xx =mj

zg
k
xx�
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If mk
z and mj

z are unrestricted, this must hold for any values of mk
z and mj

z. If either mk
z or mj

z are
allowed to be zero, then this implies gj

xx = gk
xx = 0. Q.E.D.

Proof of Proposition 5:

Assumptions:
A1: �s

ji are assumed mutually independent and have finite second moments.
A2: E��s

ji� lnx�zs�= 0.
A3: lnxi is independently distributed with density f̂ s�·� that is two times boundedly differentiable.
A4: f̂ s�·��r̂ s�·��2 are two times boundedly differentiable functions.
A5: �� ′��′� is in a bounded and open set.
A6: The twice boundedly differentiable weight function � , is nonnegative and positive only on

the interior of a compact interval �x . For all points x ∈�x , we have that f s�lnx� > 0 and that for all
��̄ ′� �̄′�� x� z�∈�×� that f 0�lnx−��zs′��� > 0.

A7: No parameter vector �� ′��′� �= �� ′
0��

′
0� exists such that for some j , gs

j �lnx�= zs′�j +g0
j �lnx−

��zs′��� almost all x ∈�x .
A8: The same kernel is used for all s = 0�1� � � � � S groups with bandwidth nsh

5 →�, nsh
6 → 0

as ns →�.
With Assumptions A1–A8 in place, Proposition 5 follows directly from Lemmas 1–6 and

Theorem 1 in Pinske and Robinson (1995). Q.E.D.

Discussion of Assumptions in Proposition 5:
A1–A4 are standard assumptions and follow from the model specification in Sections 3.1 and 3.2.

A5 relates to the adult equivalence scale parameters for children (relative to the base case of a couple
with no children). As pointed out in the text, these are bounded between the adult scale and zero.
Given the boundedness of �, f 0�lnx−��zs′��� > 0 follows. A7 is guaranteed by assuming that at
least one good has strictly nonlinear Engel curves (actually nonlinear relationship between the share
and log total expenditure). This has been established in many empirical applications to UK data (see
Banks, Blundell, and Lewbel (1997), for example). A8 follows from our common choice of kernel
and the bandwidth condition is satisfied under cross validation.

APPENDIX B: Illustration of Algorithm A

Figure 7 illustrates the algorithm. In the first iteration step, (i) begins with s = 0 and F �0� =
�q1�q2�x

′
2��q3�x

′
3�� q̄4	, where x′

2 = p′
2q1 and x′

3 = p′
3q1. Clearly q̄4P

0
4 q2 and hence q̄4Pq1. In step (ii)

F �1� = �q1�q2�x
′
2��q3�x

′
3��q4�x

′
4�	 since q̄4P

0
4 q�x

′
4�. Because F �0� �= F �1� we set s = s+1= 1 and go to

step (ii) at the second iteration. Now F �2� = �q1�q2�x
′
2��q3�x

′
3��q4�x

′
4�	 and in step (iii) the iteration

ends defining QB�q1� = �q1�q2�x
′
2��q3�x

′
3��q4�x

′
4�	. Algorithm A.2 proceeds in a similar way giving

QW = �q1q2�x2��q3�x3��q4�x4�� x4/p
1
4� x1/p

2
1	 but A.2 has the additional step that identifies the final

two points on the q1 = 0 and q2 = 0 axes. The dashed lines marked ‘upper’ and ‘lower’ show the
bounds on c�pz�q1� given by min �p′

zqt �qt ∈QW�q1�	 and min �p′
zqt �qt ∈QB�q1�	 for some new set

of relative prices pz.

APPENDIX C: Simulating Measurement Error

Given a period t total outlay xt , we set expenditure on good j in that period equal to �jtxt for
j = 1�2� � � � � J . We choose the �jt weights in the following way. First, we draw �̃jt from a Beta
distribution with parameters �aj � bj � (where the distribution parameters are kept constant over time).
To do this, we first have to calibrate the two parameters for each good. To fix one parameter we set
E��̃jt�= �j where the latter is a given budget share (see below). Given the usual expression for the
mean of a Beta distributed variable, this implies that we must set

bj =
�1−�j�aj

�j

(39)
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Figure 7.—Bounds on the cost-of-living index using expansion paths.

for each good j . It only remains to calibrate the aj parameters. The variance of a Beta distributed
random variable is given by

� 2
j = ajbj

�1+aj +bj��aj +bi�
2
= �1−�j��j

aj +�j

(40)

so that if we take a value for the variance, the associated value of aj is given by

aj =
(
�1−�j��j

� 2
j

−1
)
�j�(41)

Thus we first choose ��j��
2
j � for each good and then calculate �aj � bj � for j = 1�2� � � � � J . Given

these parameters we can simulate a set of budget weights for each period t, ��̃1t � �̃2t � � � � � �̃Jt�. Since
these will not normally sum to unity, we set

�jt =
�̃jt∑J
j=1 �̃jt

�(42)

Although the marginals of the joint distribution of the �jt ’s are now no longer a Beta distribution
and the weights do not have the desirable property that E��jt� = �j , we do have that the mean is
approximately equal to the data mean (using conventional expansion arguments on the mean of a
ratio) and bounded between zero and unity, which suffices for our purposes. It only remains to choose
the mean and variances discussed above. We use data from one representative year (1974) and set
the budget shares �j ’s equal to the mean budget shares. For the variance, we first take the variance
of each budget share, denoted �̄ 2

j for good j . We take this to be an upper bound for noise in the
measurement and then choose an attenuation factor � to give the calibrating variance � 2 = ��̄ 2

j for
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each good. Thus an attenuation factor of unity gives the maximum noise and an attenuation factor
of zero gives no noise.

APPENDIX D: Data

TABLE V

Total Nondurable Nominal Expenditure: Annual Descriptive Statistics

Year No. of Obs. Mean Std. Dev. 10% 50% 90%

1974 3386 39�11 17�95 20�41 35�19 62�93
1975 3696 47�17 21�17 24�83 42�36 75�92
1976 3553 52�79 24�20 27�75 47�23 84�15
1977 3683 60�94 27�71 31�87 54�83 98�65
1978 3583 67�84 31�33 35�34 60�78 108�76
1979 3476 79�18 37�04 40�36 71�42 127�72
1980 3717 92�84 43�07 47�67 82�77 152�70
1981 4072 102�63 47�94 52�78 91�29 169�21
1982 3974 108�89 50�10 56�83 98�15 175�15
1983 3749 117�11 54�40 60�33 105�69 190�41
1984 3755 124�71 59�71 62�81 110�22 206�58
1985 3775 132�56 64�68 64�94 117�65 219�00
1986 3826 143�35 71�64 69�35 126�01 240�79
1987 3962 150�49 74�20 72�42 134�40 249�69
1988 4003 163�01 83�09 75�71 145�68 274�40
1989 4086 173�93 86�57 83�38 155�14 292�80
1990 3772 191�01 95�95 91�15 169�15 320�19
1991 3886 199�59 99�41 96�19 177�71 332�81
1992 3999 205�58 97�29 101�02 185�86 339�20
1993 3800 219�84 111�99 105�47 192�97 363�91
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